已知n阶方阵A适合A2+2A+In=0,则必有()

作者:高老师 浏览 0

已知n阶方阵A适合A2+2A+In=0,则必有()
A、|A|=0
B、A+I=0
C、A可逆
D、|A|=-1
【正确答案】:C
【题目解析】:因为A2+2A+In=0,所以A(A+2In)=-In,故|A||A+2In|=|A(A+2In)|=(-1)n≠0于是|A|≠0,A是可逆矩阵.

📱 扫码体验刷题小程序

微信小程序二维码

扫一扫使用我们的微信小程序

热门题目

已复制到剪贴板