设∑为球面x2+y2+z2=1的下半部分的下侧,则∫∫∑zdxdy=()

作者:高老师 浏览 0

设∑为球面x2+y2+z2=1的下半部分的下侧,则∫∫zdxdy=()
A、-∫0dθ∫01(√1-r2)•rdr
B、∫0dθ∫01(√1-r2)•rdr
C、-∫0dθ∫01(√1-r2)dr
D、∫0dθ∫01(√1-r2)dr
【正确答案】:B
【题目解析】:由于下半球方程为z=√1-x2-y2,又∑在Oxy平面上的投影为Dxy={(x,y)∣x2+y2≤1}={(r,θ)∣0≤θ≤2π,0≤r≤1},并且积分曲面为∑的下侧,所以∫∫zdxdy=-∫∫Dxy(-√1-x2-y2)dσ=∫0dθ∫01√1-√r2•rdr.

📱 扫码体验刷题小程序

微信小程序二维码

扫一扫使用我们的微信小程序

热门题目

已复制到剪贴板