设f(x);是[0,1]上的连续函数,证明
∫01dy∫0√yeyf(x)dx=
∫01(e-ex2)f(x)dx.
【正确答案】:证明:由于{(x,y)∣0≤y≤1,0≤x≤√y}={(x,y)∣0≤x≤1,x2≤y≤1} 所以∫01dy∫0√yeyf(x)dx= ∫01dx∫x21eyf(x)dy =∫01f(x)•ey∣x21dx =∫01(e-ex2)f(x)dx
设f(x);是[0,1]上的连续函数,证明∫01dy∫0√yeyf(x)dx=∫01(e-ex2)f(x)dx.
📱 扫码体验刷题小程序
扫一扫使用我们的微信小程序