当前位置:首页 > 高等数学(一)(00020) > 正文内容

求下列函数的导数:(1)y=sin(2x+3);(2)y=e1/x;(3)y=ln[x-√(x2-1)];(4)y=arctan

求下列函数的导数:
(1)y=sin(2x+3);
(2)y=e1/x
(3)y=ln[x-√(x2-1)];
(4)y=arctan(x/2);
(5)y=sin(cos1/x).
【正确答案】:(1)y'=(2x+3)' cos(2x+3) =2cos(2x+3). (2)y'=(1/x)'e1/x =-1/x2e1/x (3)y'=(x-√(x2-1))'×1/[x-√(x2-1)] =[1-2x/2√(x2-1)][x+√(2-1)] =[1-x/√(x2-1)][x+√(x2-1)] =-1/√(x2-1) (4)y'= 1/[1+(x/2)2]•(x/2)' =4/4+x2•1/2 (5)y'=cos(cos1/x)•(cos1/x)' =-cos(cos1/x)•sin(1/x)•(1/x)' =1/x2cos(cos1/x)•sin(1/x).

扫描二维码免费使用微信小程序搜题/刷题/查看解析。

版权声明:本文由翰林刷题小程序授权发布,如需转载请注明出处。

本文链接:https://20230611.cn/post/60303.html