计算下列反常积分:∫+∞1arctanx/x2dx

作者:高老师 浏览 0

计算下列反常积分:
+∞1arctanx/x2dx
【正确答案】:∫+∞1arctanx/x2dx =-∫+∞1arctanxd1/x =-[arctanx/x|+∞1-∫+∞11/x•1/(1+x2)dx] =π/4+∫+∞1[1/x-x/(1+x2)]dx =π/4+lnx|+∞1-1/2∫+∞11/(1+x2)d(1+x2) =π/4+lnx|+∞1-1/2ln(1+x2)|+∞1 =π/4+ln2/2

📱 扫码体验刷题小程序

微信小程序二维码

扫一扫使用我们的微信小程序

热门题目

已复制到剪贴板