设n为正整数,在1与n+1之间插入n个正数,使这n+2个数成等比数列,求所插入的n个正数的乘积

作者:高老师 浏览 5

设n为正整数,在1与n+1之间插入n个正数,使这n+2个数成等比数列,求所插入的n个正数的乘积
【正确答案】:设题中等比数列的公比为q,则 qn+1=n+1. 所插入的n个正数分别为 q,q2,…,qn , 则它们的乘积为 q1+2+…+n=qn/2(n+1) =(n+1)n/2

📱 扫码体验刷题小程序

微信小程序二维码

扫一扫使用我们的微信小程序

热门题目

已复制到剪贴板