当前位置:首页 > 翰林刷题小程序真题 > 正文内容

【教师考试】【(中学)数学学科知识与教学能力】[高中] 2021年教师资格证《数学学科知识与教学能力》名师预测卷3考试真题

(1).

当x→0时,下列哪一个无穷小是x的三阶无穷小。()

A.A
B.B
C.C
D.D
正确答案B

(2).

设随机变量X,Y相互独立,且X~N(μ,σ2),Y在[a,b]区间上服从均匀分布,则D(X-2Y)=()。

A.A
B.B
C.C
D.D
正确答案A

(3).《几何原本》传入中国,首先应归功于科学家()。

A.刘徽
B.秦九韶
C.徐光启
D.李善兰
正确答案C

(4).

A.绝对收敛
B.条件收敛
C.发散
D.不确定是否收敛
正确答案A

(5).被誉为中国人工智能之父,在几何定理的机器证实取得重大突破,并获得首届国家最高科学技术奖的数学家是()。

A.张景中
B.吴文俊
C.华罗庚
D.陈景润
正确答案B

(6).

A.连续点
B.跳跃间断点
C.第二类间断点
D.可去间断点
正确答案D

(7).

A.A
B.B
C.C
D.D
正确答案B

(8).

A.A
B.B
C.C
D.D
正确答案C

(9).

(10). 公式为

(11).面对课堂上出现的各种各样的意外生成,教师如何正确应对,如何让这些生成为我们高效的课堂教学服务,如何把自己课前的预设和课堂上的生成有效融合,从而实现教学效果的最大化,这是教师时刻面临的问题。 在一次听课中有下面的一个教学片段:教师在介绍完中位线的概念后.布置了一个操作探究活动。 师:大家把手中的三角形纸片沿其一条中位线剪开,并用剪得的纸片拼出一个四边形,由这个活动你可以得到哪些和中位线有关的结论?学生正准备动手操作,一名学生举起了手。 生:我不剪彩纸也知道结论。 师:你知道什么结论? 生:三角形的中位线平行于第三边并等于第三边的一半。 教师没有想到会出现这么个“程咬金”。脸冷了下来:“你怎么知道的?” 生:我昨天预习了,书上这么说的。 师:就你聪明,坐下! 后面的教学是在沉闷的气氛中进行的,学生操作完成后再也不敢举手发言了。 问题: (1)结合上面这位教师的教学过程,简要做出评析;(10分) (2)结合你的教学经历,说明如何处理好课堂上的意外生成。(10分)

(1)在课堂上,教师面对的是一群有着不同生活经历、有自己的想法,在很多方面存在差异的生命体,也正是因为有这种差异,课堂才是充满变化、丰富多彩的,教师如果不能适应这种变化,不能及时正确处理课堂的生成,那么其课堂效果将很难保证是高效的。在上面的教学片段中教师对学生直接说出中位线的性质很是不满,因为这样一来教师后面设计好的精彩探索活动就没有必要再进行了,碰上这样的意外,教师采取了生硬的处理方式,让其他学生继续探索,但此时教师的不满情绪和处理这件事情的方式使得全班同学失去了探索的兴趣和发言的勇气。教师如果换一种方式,先表扬发言学生“你真是个爱学习的学生,我相信你还是个爱思考的学生!”然后让他和大家一道动手操作、探索、验证中位线为什么会具有这样的性质,课堂效果应该更好。(2)生成从性质角度来说,有积极的一面,也有消极的一面,从效果角度来说有有效的一面,也有无效的一面。教师在课堂上要充分发挥好自己组织者的角色,不断地捕捉、判断、重组课堂教学中从学生那里涌现出来的各种各类信息,并能快速断定哪些生成对教学是有效的,哪些生成是偏离了教学目标,一名优秀的数学教师应该能够正确应对课堂上出现的各种各样生成,使之为我们的数学教学服务,提高课堂教学的效果。

(12).简述数学概念学习的基本内容和形式。

数学概念学习包括以下四个方面:第一,数学概念名称;第二,数学概念定义;第三,数学概念的例子;第四,数学概念属性。数学概念学习的形式一般有两种:第一,数学概念形成。数学概念形成的过程有以下几个阶段:(1)观察实例。(2)分析共同属性。(3)抽象本质属性。(4)确认本质属性。(5)概括定义。(6)符号表示。(7)具体运用。第二,数学概念同化。

(13).结合教学实际说一说,你认为新课程标准对教师的课堂教学有哪些要求?

(1)创设良好氛围,激励学生学习。(2)围绕教学目标,开展教学活动。(3)突出思维训练,培养思维能力。(4)着眼学生发展,组织学生活动。(5)运用多种教学方法,选用恰当教学媒体。(6)重视教师的人格力量,规范教师的课堂行为。

(14).

(15).

(16).结合实例说明中学生是怎样学习数学概念、数学命题的。

数学概念的学习可分为两种基本形式:概念的形成,概念的同化。(1)概念的形成是通过对概念所反映的事物的不同例子中,学生积极主动地去发现其本质属性,从而形成新概念。如学习函数的单调性的概念可采用如下的步骤: 第一,分别作出函数y=2x,y=-2x和y=x2+1的图像,并且观察函数变化规律。 第二,描述完前两个图像后,明确这两种变化规律分别称为增函数和减函数。 第三,二次函数的增减性要分段说明提出问题:二次函数是增函数还是减函数? 第四,能否用自己的理解说说什么是增函数,什么是减函数? 第五,(以y=x2+1在(0,+∞)上单调性为例)如何用精确的数学语言来描述函数的单调性。 第六,提问学生什么是“随着”?如何刻画“增大”?对“任取”的理解,进而得到增(减)函数的定义。 在以上几步的基础上,通过初步认识单调性再拓展探究从而抽象概括出准确定义,深入的认识单调性。 (2)概念的同化是以定义的形式给出,由学生主动地与自己认识结构中原有的有关概念相互联系,相互作用以领会它的意义,从而获得新概念。 如,学习等比数列的概念:“如果一个数列从第2项起,每一项与它的前一项的比值等于同一个常数。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0”。这时学生要主动积极地与自己认知结构中原有的概念(如等差数列的概念)区别开来,并相互贯通组成一个整体,纳入原有的概念体系之中;最后通过例题的学习与练习、习题的解答,加深对梯形本质属性的认识,使它在认知结构中得到巩固。

(17).在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1弧度的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫作1弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。 问题: (1)谈谈“弧度制”在高中数学课程中的作用;(8分) (2)确定“弧度制”的教学目标和教学重难点;(10分) (3)根据教材,设计一个“弧度制概念”引入的教学片段,引导学生经历从实际背景抽象概念的过程。(12分)

(1)关于弧度制的教材分析:选自普通高中课程标准实验教科书A版必修4第一章第1节第3课时。一方面初中已经学过角的度量单位“度”,并且上节课学习了任意角的概念,因此本节课是在学习任意角的基础上的再次延伸,为后面学习任意角的三角函数做准备,有承上启下的作用;另一方面角度制是60进制,与实数间的运算不同,在解决很多问题时带来不便,所以学习弧度制是很有必要的。通过本节的学习,掌握另一种度量角的单位制——弧度制,理解并认识到角度制和弧度制都是对角度量的方法,角的概念推广以后,在弧度制下,角的集合与实数集之间建立一一对应关系,为下一节学习三角函数做好准备。 (2)知识与技能:理解并掌握弧度制的定义;掌握角度中度与弧度的互化;理解角的集合与实数之间建立的一一对应关系;掌握并运用弧度制表示的弧长公式、扇形面积公式。 过程与方法:创设情境,引入弧度制度量角的大小.通过探究理解并掌握弧度制的定义。根据弧度制的定义推导并运用弧长公式和扇形公式,以具体的实例学习角度制与弧度制的互化。 情感态度与价值观:激发对数学强烈的求知欲,养成积极主动地学习和思考弗参与数学学习活动的好习惯。 教学重点:掌握角度中度与弧度的互化。 教学难点:掌握弧度制表示的弧长公式、扇形面积公式的应用。 (3)在课堂教学中,可采用如下设计的教学过程。 一、创设故事情境 一个生病的小男孩得知自己的体温是“102”时,十分忧伤地独自一个人躺在床上“等死”。而他的爸爸对此却一无所知,他以为儿子是想休息,所以才没有陪伴他,等他从外面打猎回来,发现儿子不见好转时,才发现儿子没有吃药。一问才知道,他儿子在学校里听同学说一个人的体温是“44”度时就不能活。当爸爸告诉他就像英里和千米一样,有两种不同的体温测量标准,一种37度是正常,而另一种98度是正常时,他才一下子放松下来,委屈的泪水哗哗地流下来。在生活、生产和科学研究中,一个量可以有几种不同的计量单位(老师可以让学生说出如长度、面积、质量等一些量的不同计量单位),并指出对于“角”仅用“度”做单位就很不方便。因此,我们要学习角的另一种计量单位——弧度。如此引入,很自然引出或鼓励学生猜测“角”还有没有其他度量方式,从而开启思维的闸门。 二、探索角新的度量方法 可从两种度量实质上的一致之处开始探索:拿两个量角器拼成一个圆,可以看出圆周被分成360份,其中每一份所对的圆心角的度数就是1度,然后提出问题“拿”圆上不同的圆弧,度量圆周时,得到的数值是否一样?为了探索这个问题,把学生分成若干小组,思考下列问题: ①1度的角是如何规定的? ②用一个圆心角所对的弧长来度量一个圆心角的大小是否可行?同一个圆心角在半径不等的圆中所对弧长相等吗? ③用一个圆的半径来度量该圆一个圆心角的大小是否可行?其值会不会由于圆半径的变化而变化? ④如何定义圆心角的大小?说明这种度量的好处。 要求学生分组讨论以上问题,写出结果,在班内交流结果,师生共同确定答案。 这样处理可将弧度概念与度量有机结合起来,有效化解难点,在探索中又注重课堂交流能力的培养,使学生在不断的交流中逐渐明晰自己的思路。

此题目数据由翰林刷题小程序免费提供

扫描二维码免费使用微信小程序搜题/刷题/查看解析。

版权声明:本文由翰林刷题小程序授权发布,如需转载请注明出处。

本文链接:https://20230611.cn/post/9923509.html